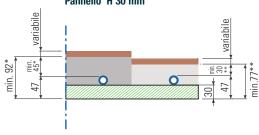

pannello Roll-plan

Pannello isolante accoppiato liscio

Dimensioni pannello e ingombri minimi del sistema per edifici civili (mm)

- (*) Massetto cementizio tradizionale
- (**) Massetto autolivellante o massetto armato


Dimensioni (mm) Pannello H 30 mm

Sezioni (mm) Pannello H 30 mm

Ingombri minimi (mm) Pannello H 30 mm

Nota: i massetti non vengono forniti da FIV.

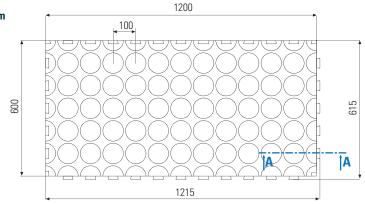
Lo spessore effettivo del massetto e la modalità di realizzazione dello stesso sono da definire con il produttore / fornitore dello stesso secondo le sue specifiche, in funzione delle condizioni di installazione (dimensione e tipologia superficie di posa, tipologia solaio, ecc.) e del tipo di massetto scelto.

pannello Low-Thick

Pannello isolante con grafite passo 100 mm

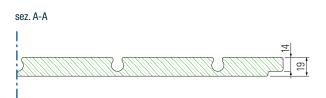
Dimensioni pannello e ingombri minimi del sistema per edifici civili (mm)

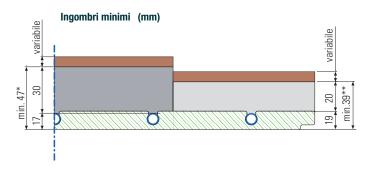
- Massetto autolivellante o massetto armato
- (**) Massetto fluido a basso spessore (Esempio: Knauf Autolivellina NE 425)


Nota: i massetti non vengono forniti da FIV.

Lo spessore effettivo del massetto e la modalità di realizzazione dello stesso sono da definire con il produttore / fornitore dello stesso secondo le sue specifiche, in funzione delle condizioni di installazione (dimensione e tipologia superficie di posa, tipologia solaio, ecc.) e del tipo di massetto scelto.

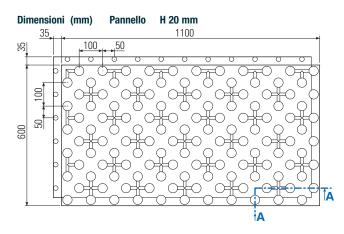
Dimensioni

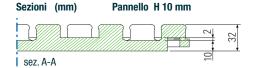

(mm)

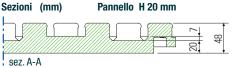

Pannello h 5 mm

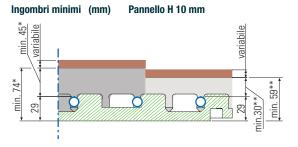
Sezioni (mm)

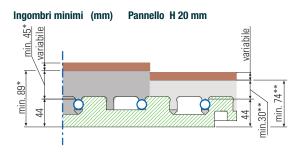
Pannello H 5 mm


pannello Basic

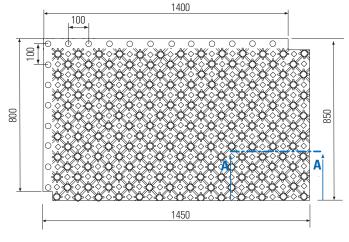

Pannello rivestito passo 50 mm

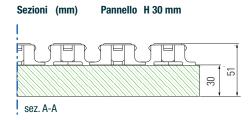

Dimensioni pannello e ingombri minimi del sistema per edifici civili (mm)


- (*) Massetto cementizio tradizionale
- (**) Massetto autolivellante o massetto armato



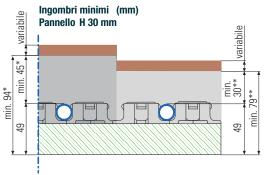
Nota: i massetti non vengono forniti da FIV.


Lo spessore effettivo del massetto e la modalità di realizzazione dello stesso sono da definire con il produttore / fornitore dello stesso secondo le sue specifiche, in funzione delle condizioni di installazione (dimensione e tipologia superficie di posa, tipologia solaio, ecc.) e del tipo di massetto scelto.


pannello Phono-Term

Pannello fono-isolante passo 50 mm

Dimensioni pannello e ingombri minimi del sistema per edifici civili (mm)

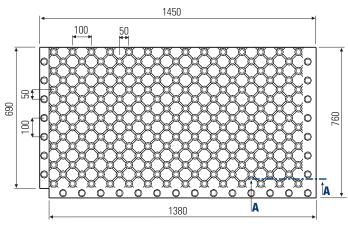

- (*) Massetto cementizio tradizionale
- (**) Massetto autolivellante
- o massetto armato

Nota: i massetti non vengono forniti da FIV.

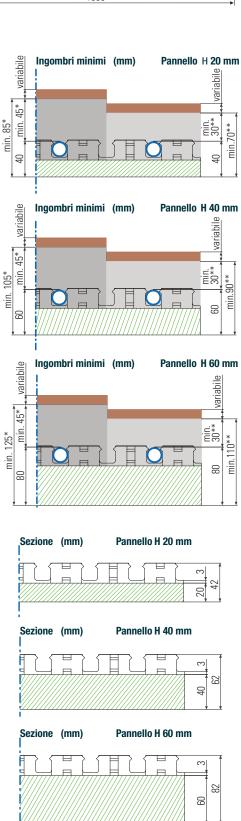
Lo spessore effettivo del massetto e la modalità di realizzazione dello stesso sono da definire con il produttore / fornitore dello stesso secondo le sue specifiche, in funzione delle condizioni di installazione (dimensione e tipologia superficie di posa, tipologia solaio, ecc.) e del tipo di massetto scelto.

pannello Special

Pannello isolante passo 50 mm

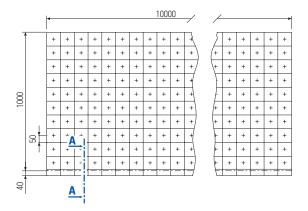

Dimensioni pannello e ingombri minimi

del sistema per edifici civili (mm)

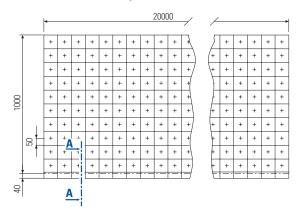

- (*) Massetto cementizio tradizionale
- (**) Massetto autolivellante o massetto armato

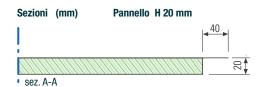
Nota: i massetti non vengono forniti da FIV.

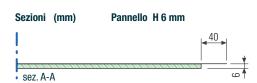
Lo spessore effettivo del massetto e la modalità di realizzazione dello stesso sono da definire con il produttore / fornitore dello stesso secondo le sue specifiche, in funzione delle condizioni di installazione (dimensione e tipologia superficie di posa, tipologia solaio, ecc.) e del tipo di massetto scelto.

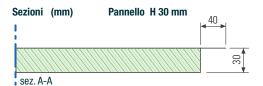

pannello Klettjet

Pannello isolante passo 50 mm

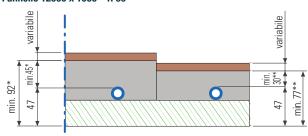

Dimensioni pannello e ingombri minimi del sistema per edifici civili (mm)


- (*) Massetto cementizio tradizionale
- (**) Massetto autolivellante o massetto armato


Pannello Isolante Klettjet EPS-150 modello H = 20, H = 30



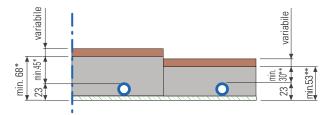
Pannello Isolante PE Klettjet R Modello H = 6



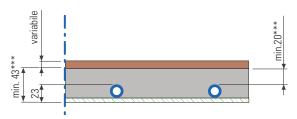
Pannello 10000 x 1000 H 20

Pannello 12000 x 1000 H 30

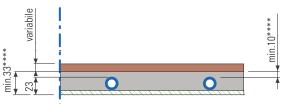
Nota: i massetti non vengono forniti da FIV.


Lo spessore effettivo del massetto e la modalità di realizzazione dello stesso sono da definire con il produttore / fornitore dello stesso secondo le sue specifiche, in funzione delle condizioni di installazione (dimensione e tipologia superficie di posa, tipologia solaio, ecc.) e del tipo di massetto scelto.

pannello Klettjet


Dimensioni pannello e ingombri minimi del sistema per edifici civili (mm)

- (*) Massetto cementizio tradizionale
- (**) Massetto autolivellante
- (***) Massetto fluido a basso spessore Knauf Autolivellina NE425
- (****) Massetto fluido a basso spessore Knauf Superlivellina NE499


Pannello 20000 x 1000 H 6

Pannello 20000 x 1000 H 6 - Con massetto Knauf NE425

Pannello 20000 x 1000 H 6 - Con massetto Knauf NE499

Nota: i massetti non vengono forniti da FIV.

Lo spessore effettivo del massetto e la modalità di realizzazione dello stesso sono da definire con il produttore / fornitore dello stesso secondo le sue specifiche, in funzione delle condizioni di installazione (dimensione e tipologia superficie di posa, tipologia solaio, ecc.) e del tipo di massetto scelto.

classi applicazione tubo PEXPENTA Klett

Classificazione delle condizioni di utilizzo (UNI EN ISO 21003-1)

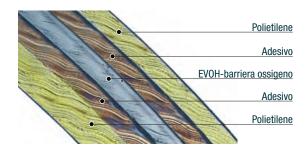
Classe applicativa	Temperatura di progetto T _D (°C)	Durata ^b a T _D (anni)	T _{max} (°C)	Durata a T _{max} (anni)	T _{mal} (°C)	Durata a T _{mal} (ore)	Campo di impiego
1 ^a	60	49	80	1	95	100	Acqua calda (60 °C)
2 ^a	70	49	80	1	95	100	Acqua calda (70 °C)
4 ^b	20 + 40 + 60	2,5 20 25	70	2,5	100	100	Riscaldamento a pavimento e radiatori a bassa temperatura
5 ^b	20 + 60 + 80	14 25 10	90	1	100	100	Radiatori ad alta temperatura

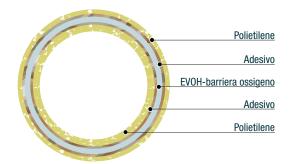
Note:

T_D t

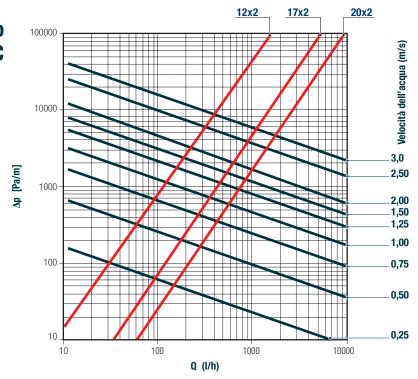
temperatura progetto

temperatura massima di progetto per brevi periodi temperatura di malfunzionamento


- a) Un Paese può selezionare sia Classe 1 o Classe 2 in conformità con le sue normative nazionali.
- b) Quando in una classe sono presenti più temperature di progetto con le relative durate nel tempo, il simbolo "+" indica che è necessario effettuare una somma. Ad esempio, il profilo di temperatura di progettazione per 50 anni per la classe 5 va letto come segue: 20 °C per 14 anni, seguito da 60 °C per 25 anni, 80 °C per 10 anni, 90 °C per 1 anno e 100 °C per 100 h.



PE-Xc PENTA tubo barriera ossigeno EVOH


PERMEABILITÀ ALL'OSSIGENO DEI TUBI PE-XC PENTA

Barriera ossigeno: per impedire la diffusione di ossigeno attraverso le molecole del PE-X, che aumenterebbe l'aggressività dell'acqua verso i componenti metallici dell'impianto (es. caldaia), il tubo PE-Xc FIV è composto da cinque strati in cui la barriera ossigeno risulta protetta da danni meccanici e nello stesso tempo lo spessore dello strato interno in PE-X è sempre pari a quello di un tubo 3 strati di misura equivalente.

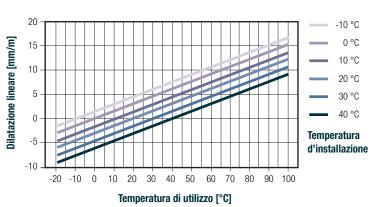
perdite di carico con acqua a 20 °C

dilatazione lineare

Il diagramma mostra la dilatazione lineare di 1 m di tubo, in funzione della differenza tra la temperatura di installazione e quella di utilizzo.

La dilatazione lineare si calcola attraverso la formula:

 $\Delta L = \alpha x \text{ Linst x (Toper - Tinst)}$


dove:

 α : coefficiente di dilatazione lineare, pari a 0.15 mm/(m °C)

Linst: lunghezza del tubo alla temperatura d'installazione [m]

Tinst: temperatura alla quale il tubo è installato [°C]

Toper: temperatura alla quale il tubo è utilizzato [°C]

curve di regressione tubo PE-Xc PENTA

LETTURA DIAGRAMMA

La sollecitazione massima ammissibile (σ_{max}) per una durata di 50 anni ad una determinata temperatura si individua intersecando la retta (verticale) relativa a 50 anni con la retta relativa a tale temperatura. Il valore di pressione equivalente si ricava con la seguente:

$$p_{\text{max}} \text{ (bar)} = \underbrace{\frac{20 \text{ x } \sigma_{\text{max}} \text{ x } S_{\text{p}}}{D - Sp}}$$

 $\sigma_{max} = \text{sollecitazione max ammissibile (MPa)}$ $S_p = \text{spessore tubo (mm)}$ $D = \emptyset \text{ esterno tubo (mm)}$

Nota la pressione d'esercizio (p $_{es}$), il coefficiente di sicurezza sarà pari a Ks = p_{max}/p_{es}

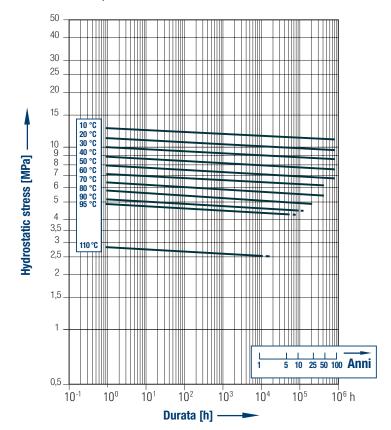


Diagram made according to EN ISO 15875-2

$\begin{tabular}{ll} \textbf{Esempio:}\\ \textbf{Temperatura fluido} = 60 \ ^{\circ}\text{C}\\ \textbf{D} = 17 \ \text{mm}\\ \textbf{S}_{n} = 2 \ \text{mm} \end{tabular}$

 p_{max} (bar) = $20 \times 6 \times 2 = 240 = 16$ bar 17 - 2 = 15

classi applicazione tubo PE-Xc PENTA

TUBO 5 STRATI PE-XC / EVOH / PE-XC Classificazione delle condizioni di utilizzo (UNI EN ISO 21003-1)

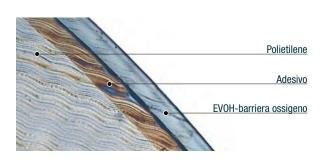
Classe applicativa	Temperatura di progetto T _D (°C)	Durata ^b a T _D (anni)	T _{max} (°C)	Durata a T _{max} (anni)	T _{mal} (°C)	Durata a T _{mal} (ore)	Campo di impiego	
1 ^a	60	49	80	1	95	100	Acqua calda (60 °C)	
2 ^a	70	49	80	1	95	100	Acqua calda (70 °C)	
4 ^b	20 + 40 +	2,5 20	70	70 2,5	100	100	Riscaldamento a pavimento e radiatori a bassa temperatura	
	60	25						
5 ^b	20	14	90	90 1		100	100	Radiatori ad alta temperatura
	60 +	25			1			
	80	10						

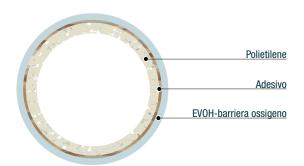
Note:

T_D T_{max} T_{mal} temperatura progetto

temperatura massima di progetto per brevi periodi temperatura di malfunzionamento

a) Un Paese può selezionare sia Classe 1 o Classe 2 in conformità con le sue normative nazionali.


b) Quando in una classe sono presenti più temperature di progetto con le relative durate nel tempo, il simbolo "+" indica che è necessario effettuare una somma. Ad esempio, il profilo di temperatura di progettazione per 50 anni per la classe 5 va letto come segue: 20 °C per 14 anni, seguito da 60 °C per 25 anni, 80 °C per 10 anni, 90 °C per 1 anno e 100 °C per 100 h.



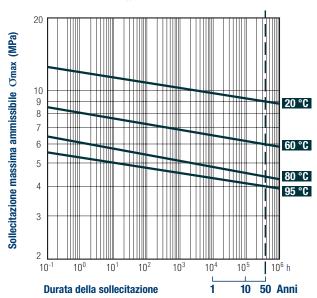
PE-Xa tubo barriera ossigeno EVOH

PERMEABILITÀ ALL'OSSIGENO DEI TUBI PE-XA

Barriera ossigeno: per impedire la diffusione di ossigeno attraverso le molecole del PE-X, che aumenterebbe l'aggressività dell'acqua verso i componenti metallici dell'impianto (es. caldaia), viene applicato uno strato di etilenvinilalcool (EVOH) esternamente al tubo che lo rende stagno, come richiesto dalla norma DIN 4726.

curve di regressione tubo PE-Xa

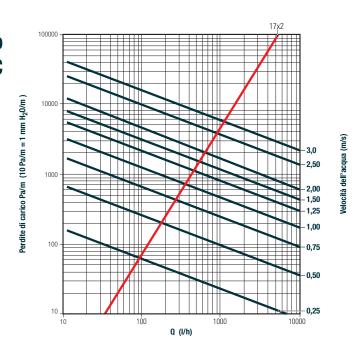
LETTURA DIAGRAMMA


la sollecitazione massima ammissibile (σ_{max}) per una durata di 50 anni ad una determinata temperatura si individua intersecando la retta (verticale) relativa a 50 anni con la retta relativa a tale temperatura. Il valore di pressione equivalente si ricava con la seguente:

$$p_{max} (bar) = \frac{20 \text{ x } \sigma_{max} \text{ x } S_p}{D - Sp}$$
 in cui:

 σ_{max} = sollecitazione max ammissibile (MPa)

 $\begin{array}{lll} S_p & = & \text{spessore tubo (mm)} \\ D & = & \emptyset & \text{esterno tubo (mm)} \end{array}$


Nota la pressione d'esercizio (p_{es}), il coefficiente di sicurezza sarà pari a Ks = p_{max}/p_{es}

Esempio:

$$\label{eq:power_power} \begin{split} \text{Temperatura fluido} &= 60 \text{ °C} \\ D &= 17 \text{ mm} \\ S_p &= 2 \text{ mm} \\ \text{Durata} &= 50 \text{ anni} \\ \text{p}_{\text{max}} \text{ (bar)} &= \underbrace{\begin{array}{ccc} 20 \times 6 \times 2 & = & 240 & = 16 \text{ bar} \\ 17 - 2 & & 15 \end{array}} \end{split}$$

perdite di carico con acqua a 20 °C

Classificazione delle condizioni di utilizzo (UNI EN ISO 15875-2)

classi applicazione tubo PE-Xa

Classe applicativa	Temperatura di progetto T _D (°C)	Durata ^b a T _D (anni)	T _{max} (°C)	Durata a T _{max} (anni)	T _{mal} (°C)	Durata a T _{mal} (ore)	Campo di impiego
1 ^a	60	49	80	1	95	100	Acqua calda (60 °C)
2 ^a	70	49	80	1	95	100	Acqua calda (70 °C)
4 ^b	20 + 40 + 60	2,5 20 25	70	2,5	100	100	Riscaldamento a pavimento e radiatori a bassa temperatura
5 ^b	20 + 60 + 80	14 25 10	90	1	100	100	Radiatori ad alta temperatura

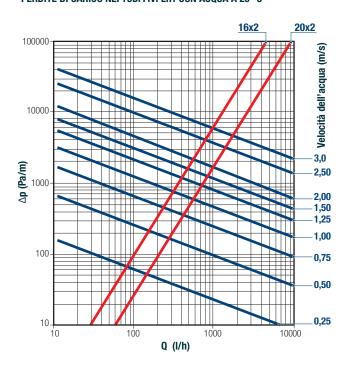
Note:

T_D

temperatura progetto

 $\mathbf{T}_{\mathbf{max}}$ temperatura massima di progetto per brevi periodi

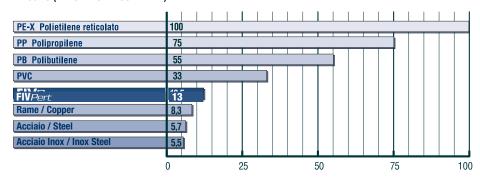
temperatura di malfunzionamento


- a) Un Paese può selezionare sia Classe 1 o Classe 2 in conformità con le sue normative nazionali.
- b) Quando in una classe sono presenti più temperature di progetto con le relative durate nel tempo, il simbolo "+" indica che è necessario effettuare una somma. Ad esempio, il profilo di temperatura di progettazione per 50 anni per la classe 5 va letto come segue: 20 °C per 14 anni, seguito da 60 °C per 25 anni, 80 °C per 10 anni, 90 °C per 1 anno e 100 °C per 100 h.

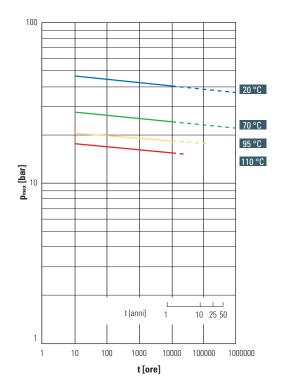
FIVPert tubo multistrato

TUBO MULTISTRATO PE-RT / AL / PE-RT

 $\label{thm:linear_problem} \mbox{Tubo multistrato per l'impiantistica termosanitaria.}$


PERDITE DI CARICO NEI TUBI FIVPERT CON ACQUA A 20 °C

dilatazione termica


DILATAZIONE TERMICA LINEARE PER TUBI DA 10 M IN DIFFERENTI MATERIALI ΔT 50 °C (VALORI ESPRESSI IN MM)

curve di regressione Tubo FIVPert (Ø 16x2)

Esempio di lettura curve di regressione

La pressione massima (p_{max}) per una durata di 50 anni ad una determinata temperatura si individua intersecando la retta (verticale) relativa a 50 anni con la retta (colorata) relativa a tale temperatura. Nota la pressione d'esercizio prevista (p_{es}), il coefficiente di sicurezza sarà pari a $Ks=p_{max}/p_{es}$

classi applicazione tubo FIVPert

TUBO MULTISTRATO PE-RT / AL / PE-RT Classificazione delle condizioni di utilizzo (UNI EN ISO 21003-2)

Classe applicativa	Temperatura di progetto T _D (°C)	Durata ^b a T _D (anni)	T _{max} (°C)	Durata a T _{max} (anni)	T _{mal} (°C)	Durata a T _{mal} (ore)	Campo di impiego
1 ^a	60	49	80	1	95	100	Acqua calda (60 °C)
2 ^a	70	49	80	1	95	100	Acqua calda (70 °C)
4 ^b	20 + 40 + 60	2,5 20 25	70	2,5	100	100	Riscaldamento a pavimento e radiatori a bassa temperatura
5 ^b	20 + 60 + 80	14 25 10	90	1	100	100	Radiatori ad alta temperatura

Note:

T_D T_{max} temperatura progetto

temperatura massima di progetto per brevi periodi temperatura di malfunzionamento

a) Un Paese può selezionare sia Classe 1 o Classe 2 in conformità con le sue normative nazionali.

b) Quando in una classe sono presenti più temperature di progetto con le relative durate nel tempo, il simbolo "+" indica che è necessario effettuare una somma. Ad esempio, il profilo di temperatura di progettazione per 50 anni per la classe 5 va letto come segue: 20 °C per 14 anni, seguito da 60 °C per 25 anni, 80 °C per 10 anni, 90 °C per 1 anno e 100 °C per 100 h.